也想出现在这里? 联系我们

Linux中计算特定CPU使用率案例详解

作者 : 小编 本文共8780个字,预计阅读时间需要22分钟 发布时间: 2022-10-21 共455人阅读
也想出现在这里? 联系我们

Linux中计算特定CPU使用率 需求解决方案拓展参考

需求

在Linux中可以通过top指令查看某一进程占用的CPU情况,也可以查看某一个CPU使用率情况(先top指令,然后按数字“1”键即可显示每一个CPU的使用情况),如下图:

查看CPU使用情况

而我们的需求是:如何得到一个CPU的占用率呢?

解决方案

1. 背景知识

在/proc/stat中可以查看每一个CPU的使用情况的,如下图:

查看/proc/stat

其中cpu(0/1/2/…)后面的那十个数字含义如下:

/proc/stat
kernel/system statistics.  Varies with architecture.  
Common entries include:

     user nice system idle iowait  irq  softirq steal guest guest_nice
cpu  4705 356  584    3699   23    23     0       0     0        0
cpu0 1393280 32966 572056 13343292 6130 0 17875 0 23933 0
   The amount of time, measured in units of USER_HZ
   (1/100ths of a second on most architectures, use
   sysconf(_SC_CLK_TCK) to obtain the right value), that
   the system ("cpu" line) or the specific CPU ("cpuN"
   line) spent in various states:

   user   (1) Time spent in user mode.

   nice   (2) Time spent in user mode with low priority
          (nice).

   system (3) Time spent in system mode.

   idle   (4) Time spent in the idle task.  This value
          should be USER_HZ times the second entry in the
          /proc/uptime pseudo-file.

   iowait (since Linux 2.5.41)
          (5) Time waiting for I/O to complete.  This
          value is not reliable, for the following rea‐
          sons:

          1. The CPU will not wait for I/O to complete;
             iowait is the time that a task is waiting for
             I/O to complete.  When a CPU goes into idle
             state for outstanding task I/O, another task
             will be scheduled on this CPU.

          2. On a multi-core CPU, the task waiting for I/O
             to complete is not running on any CPU, so the
             iowait of each CPU is difficult to calculate.

          3. The value in this field may decrease in cer‐
             tain conditions.

   irq (since Linux 2.6.0-test4)
          (6) Time servicing interrupts.

   softirq (since Linux 2.6.0-test4)
          (7) Time servicing softirqs.

   steal (since Linux 2.6.11)
          (8) Stolen time, which is the time spent in
          other operating systems when running in a virtu‐
          alized environment

   guest (since Linux 2.6.24)
          (9) Time spent running a virtual CPU for guest
          operating systems under the control of the Linux
          kernel.

   guest_nice (since Linux 2.6.33)
          (10) Time spent running a niced guest (virtual
          CPU for guest operating systems under the con‐
          trol of the Linux kernel).

2.计算具体CPU使用率

有了上面的背景知识,接下来我们就可以计算具体CPU的使用情况了。具体计算方式如下:

Total CPU time since boot = user+nice+system+idle+iowait+irq+softirq+steal
Total CPU Idle time since boot = idle + iowait
Total CPU usage time since boot = Total CPU time since boot - Total CPU Idle time since boot
Total CPU percentage = Total CPU usage time since boot/Total CPU time since boot * 100%

有了上面的计算公式,计算某一CPU使用率或者系统总的CPU占用率也就是不难了。
示例:计算系统整体CPU占用情况
首先从/proc/stat中获取 t1时刻系统总体的user、nice、system、idle、iowait、irq、softirq、steal、guest、guest_nice的值,得到此时Total CPU time since boot(记为total1)和 Total CPU idle time since boot(记为idle1)。
其次,从/proc/stat中获取t2时刻系统总的Total CPU time since boot(记为total2)和Total CPU idle time since boot(记为idle2)。(方法同上一步)
最后,计算t2t1之间系统总的CPU使用情况。也就是:
CPU percentage between t1 and t2 = ((total2-total1)-(idle2-idle1))/(total2-total1)* 100%
其中, ((total2-total1)-(idle2-idle1))实际上就是t1与t2时刻之间系统CPU被占用的时间(总时间 – 空闲时间)。
下面是一段计算时间段内CPU被占用情况的脚本:

#!/bin/bash
# by Paul Colby (http://colby.id.au), no rights reserved ;)

PREV_TOTAL=0
PREV_IDLE=0

while true; do
  # Get the total CPU statistics, discarding the \'cpu \' prefix.
  CPU=(`sed -n \'s/^cpu\\s//p\' /proc/stat`)
  IDLE=${CPU[3]} # Just the idle CPU time.

  # Calculate the total CPU time.
  TOTAL=0
  for VALUE in "${CPU[@]}"; do
    let "TOTAL=$TOTAL+$VALUE"
  done

  # Calculate the CPU usage since we last checked.
  let "DIFF_IDLE=$IDLE-$PREV_IDLE"
  let "DIFF_TOTAL=$TOTAL-$PREV_TOTAL"
  let "DIFF_USAGE=(1000*($DIFF_TOTAL-$DIFF_IDLE)/$DIFF_TOTAL+5)/10"
  echo -en "\\rCPU: $DIFF_USAGE%  \\b\\b"

  # Remember the total and idle CPU times for the next check.
  PREV_TOTAL="$TOTAL"
  PREV_IDLE="$IDLE"

  # Wait before checking again.
  sleep 1
done

拓展

在内核中,关于/proc/stat中文件的实现函数如下:

附注:内核版本3.14.69,文件为 /fs/proc/stat.c

#include <linux/cpumask.h>
#include <linux/fs.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/kernel_stat.h>
#include <linux/proc_fs.h>
#include <linux/sched.h>
#include <linux/seq_file.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/irqnr.h>
#include <asm/cputime.h>
#include <linux/tick.h>

#ifndef arch_irq_stat_cpu
#define arch_irq_stat_cpu(cpu) 0
#endif
#ifndef arch_irq_stat
#define arch_irq_stat() 0
#endif

#ifdef arch_idle_time

static cputime64_t get_idle_time(int cpu)
{
	cputime64_t idle;

	idle = kcpustat_cpu(cpu).cpustat[CPUTIME_IDLE];
	if (cpu_online(cpu) && !nr_iowait_cpu(cpu))
		idle += arch_idle_time(cpu);
	return idle;
}

static cputime64_t get_iowait_time(int cpu)
{
	cputime64_t iowait;

	iowait = kcpustat_cpu(cpu).cpustat[CPUTIME_IOWAIT];
	if (cpu_online(cpu) && nr_iowait_cpu(cpu))
		iowait += arch_idle_time(cpu);
	return iowait;
}

#else

static u64 get_idle_time(int cpu)
{
	u64 idle, idle_time = -1ULL;

	if (cpu_online(cpu))
		idle_time = get_cpu_idle_time_us(cpu, NULL);

	if (idle_time == -1ULL)
		/* !NO_HZ or cpu offline so we can rely on cpustat.idle */
		idle = kcpustat_cpu(cpu).cpustat[CPUTIME_IDLE];
	else
		idle = usecs_to_cputime64(idle_time);

	return idle;
}

static u64 get_iowait_time(int cpu)
{
	u64 iowait, iowait_time = -1ULL;

	if (cpu_online(cpu))
		iowait_time = get_cpu_iowait_time_us(cpu, NULL);

	if (iowait_time == -1ULL)
		/* !NO_HZ or cpu offline so we can rely on cpustat.iowait */
		iowait = kcpustat_cpu(cpu).cpustat[CPUTIME_IOWAIT];
	else
		iowait = usecs_to_cputime64(iowait_time);

	return iowait;
}

#endif

static int show_stat(struct seq_file *p, void *v)
{
	int i, j;
	unsigned long jif;
	u64 user, nice, system, idle, iowait, irq, softirq, steal;
	u64 guest, guest_nice;
	u64 sum = 0;
	u64 sum_softirq = 0;
	unsigned int per_softirq_sums[NR_SOFTIRQS] = {0};
	struct timespec boottime;

	user = nice = system = idle = iowait =
		irq = softirq = steal = 0;
	guest = guest_nice = 0;
	getboottime(&boottime);
	jif = boottime.tv_sec;

	for_each_possible_cpu(i) {
		user += kcpustat_cpu(i).cpustat[CPUTIME_USER];
		nice += kcpustat_cpu(i).cpustat[CPUTIME_NICE];
		system += kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM];
		idle += get_idle_time(i);
		iowait += get_iowait_time(i);
		irq += kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
		softirq += kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ];
		steal += kcpustat_cpu(i).cpustat[CPUTIME_STEAL];
		guest += kcpustat_cpu(i).cpustat[CPUTIME_GUEST];
		guest_nice += kcpustat_cpu(i).cpustat[CPUTIME_GUEST_NICE];
		sum += kstat_cpu_irqs_sum(i);
		sum += arch_irq_stat_cpu(i);

		for (j = 0; j < NR_SOFTIRQS; j++) {
			unsigned int softirq_stat = kstat_softirqs_cpu(j, i);

			per_softirq_sums[j] += softirq_stat;
			sum_softirq += softirq_stat;
		}
	}
	sum += arch_irq_stat();

	seq_puts(p, "cpu ");
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(user));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(nice));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(system));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(idle));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(iowait));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(irq));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(softirq));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(steal));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(guest));
	seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(guest_nice));
	seq_putc(p, \'\\n\');

	for_each_online_cpu(i) {
		/* Copy values here to work around gcc-2.95.3, gcc-2.96 */
		user = kcpustat_cpu(i).cpustat[CPUTIME_USER];
		nice = kcpustat_cpu(i).cpustat[CPUTIME_NICE];
		system = kcpustat_cpu(i).cpustat[CPUTIME_SYSTEM];
		idle = get_idle_time(i);
		iowait = get_iowait_time(i);
		irq = kcpustat_cpu(i).cpustat[CPUTIME_IRQ];
		softirq = kcpustat_cpu(i).cpustat[CPUTIME_SOFTIRQ];
		steal = kcpustat_cpu(i).cpustat[CPUTIME_STEAL];
		guest = kcpustat_cpu(i).cpustat[CPUTIME_GUEST];
		guest_nice = kcpustat_cpu(i).cpustat[CPUTIME_GUEST_NICE];
		seq_printf(p, "cpu%d", i);
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(user));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(nice));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(system));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(idle));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(iowait));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(irq));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(softirq));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(steal));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(guest));
		seq_put_decimal_ull(p, \' \', cputime64_to_clock_t(guest_nice));
		seq_putc(p, \'\\n\');
	}
	seq_printf(p, "intr %llu", (unsigned long long)sum);

	/* sum again ? it could be updated? */
	for_each_irq_nr(j)
		seq_put_decimal_ull(p, \' \', kstat_irqs_usr(j));

	seq_printf(p,
		"\\nctxt %llu\\n"
		"btime %lu\\n"
		"processes %lu\\n"
		"procs_running %lu\\n"
		"procs_blocked %lu\\n",
		nr_context_switches(),
		(unsigned long)jif,
		total_forks,
		nr_running(),
		nr_iowait());

	seq_printf(p, "softirq %llu", (unsigned long long)sum_softirq);

	for (i = 0; i < NR_SOFTIRQS; i++)
		seq_put_decimal_ull(p, \' \', per_softirq_sums[i]);
	seq_putc(p, \'\\n\');

	return 0;
}

static int stat_open(struct inode *inode, struct file *file)
{
	size_t size = 1024 + 128 * num_possible_cpus();
	char *buf;
	struct seq_file *m;
	int res;

	/* minimum size to display an interrupt count : 2 bytes */
	size += 2 * nr_irqs;

	/* don\'t ask for more than the kmalloc() max size */
	if (size > KMALLOC_MAX_SIZE)
		size = KMALLOC_MAX_SIZE;
	buf = kmalloc(size, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	res = single_open(file, show_stat, NULL);
	if (!res) {
		m = file->private_data;
		m->buf = buf;
		m->size = ksize(buf);
	} else
		kfree(buf);
	return res;
}

static const struct file_operations proc_stat_operations = {
	.open		= stat_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static int __init proc_stat_init(void)
{
	proc_create("stat", 0, NULL, &proc_stat_operations);
	return 0;
}
fs_initcall(proc_stat_init);

参考

http://man7.org/linux/man-pages/man5/proc.5.html

https://github.com/pcolby/scripts/blob/master/cpu.sh

https://elixir.bootlin.com/linux/v3.14.69/source/fs/proc/stat.c

到此这篇关于Linux中计算特定CPU使用率案例详解的文章就介绍到这了,更多相关Linux中计算特定CPU使用率内容请搜索资源分享吧以前的文章或继续浏览下面的相关文章,希望大家以后多多支持资源分享吧!

1. 本站所提供的源码模板(主题/插件)等资源仅供学习交流,若使用商业用途,请购买正版授权,否则产生的一切后果将由下载用户自行承担,有部分资源为网上收集或仿制而来,若模板侵犯了您的合法权益,请来信通知我们(Email: rayer@88.com),我们会及时删除,给您带来的不便,我们深表歉意!
2. 分享目的仅供大家学习和交流,请不要用于商业用途!
3. 如果你也有好源码或者教程,可以到用户中心发布投稿,分享有金币奖励和额外收入!
4. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务 请大家谅解!
5. 如有链接无法下载、失效或广告,请联系站长,可领回失去的金币,并额外有奖!
6. 如遇到加密压缩包,默认解压密码为"www.zyfx8.cn",如遇到无法解压的请联系管理员!
本站部分文章、资源来自互联网,版权归原作者及网站所有,如果侵犯了您的权利,请及时联系我站删除。免责声明
资源分享吧 » Linux中计算特定CPU使用率案例详解

常见问题FAQ

免费下载或者VIP会员专享资源能否直接商用?
本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担。更多说明请参考 VIP介绍。
织梦模板使用说明
你下载的织梦模板并不包括DedeCMS使用授权,根据DedeCMS授权协议,除个人非盈利站点外,均需购买DedeCMS商业使用授权。购买地址: http://www.desdev.cn/service-dedecms.html

发表评论

Copyright 2015-2020 版权所有 资源分享吧 Rights Reserved. 蜀ICP备14022927号-1
开通VIP 享更多特权,建议使用QQ登录